Classification of EMG signals using combined features and soft computing techniques

نویسنده

  • Abdulhamit Subasi
چکیده

The motor unit action potentials (MUPs) in an electromyographic (EMG) signal provide a significant source of information for the assessment of neuromuscular disorders. Since recently there were different types of developments in computer-aided EMG equipment, different methodologies in the time domain and frequency domain has been followed for quantitative analysis of EMG signals. In this study, the usefulness of the different feature extraction methods for describing MUP morphology is investigated. Besides, soft computing techniques were presented for the classification of intramuscular EMG signals. The proposed method automatically classifies the EMG signals into normal, neurogenic or myopathic. Also, ANFIS) ynamic Fuzzy Neural Network (DFNN) lectromyography (EMG) otor unit action potentials (MUPs) iscrete Wavelet Transform (DWT) multilayer perceptron neural networks (MLPNN), dynamic fuzzy neural network (DFNN) and adaptive neuro-fuzzy inference system (ANFIS) based classifiers were compared in relation to their accuracy in the classification of EMG signals. Concerning the impacts of features on the EMG signal classification, different results were obtained through analysis of the soft computing techniques. The comparative analysis suggests that the ANFIS modelling is superior to the DFNN and MLPNN in at least three points: slightly higher recognition rate; insensitivity to overtraining; and consistent outputs demonstrating higher reliability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EMG-based wrist gesture recognition using a convolutional neural network

Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...

متن کامل

Application of statistical techniques and artificial neural network to estimate force from sEMG signals

This paper presents an application of design of experiments techniques to determine the optimized parameters of artificial neural network (ANN), which are used to estimate force from Electromyogram (sEMG) signals. The accuracy of ANN model is highly dependent on the network parameters settings. There are plenty of algorithms that are used to obtain the optimal ANN setting. However, to the best ...

متن کامل

Detection and Classification of Emotions Using Physiological Signals and Pattern Recognition Methods

Introduction: Emotions play an important role in health, communication, and interaction between humans. The ability to recognize the emotional status of people is an important indicator of health and natural relationships. In DEAP database, electroencephalogram (EEG) signals as well as environmental physiological signals related to 32 volunteers are registered. The participants in each video we...

متن کامل

Detection and Classification of Emotions Using Physiological Signals and Pattern Recognition Methods

Introduction: Emotions play an important role in health, communication, and interaction between humans. The ability to recognize the emotional status of people is an important indicator of health and natural relationships. In DEAP database, electroencephalogram (EEG) signals as well as environmental physiological signals related to 32 volunteers are registered. The participants in each video we...

متن کامل

A Hybrid Classifier for Characterizing Motor Unit Action Potentials in Diagnosing Neuromuscular Disorders

Background: The time and frequency features of motor unit action potentials (MUAPs) extracted from electromyographic (EMG) signal provide discriminative information for diagnosis and treatment of neuromuscular disorders. However, the results of conventional automatic diagnosis methods using MUAP features is not convincing yet.Objective: The main goal in designing a MUAP characterization system ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Soft Comput.

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2012